If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x=89=-87
We move all terms to the left:
2x^2-20x-(89)=0
a = 2; b = -20; c = -89;
Δ = b2-4ac
Δ = -202-4·2·(-89)
Δ = 1112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1112}=\sqrt{4*278}=\sqrt{4}*\sqrt{278}=2\sqrt{278}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{278}}{2*2}=\frac{20-2\sqrt{278}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{278}}{2*2}=\frac{20+2\sqrt{278}}{4} $
| 19-3+7j=-20+5j | | x/4+-6=-5 | | 1/3(12x+27)-6x=-3 | | -30=x+2x+-6 | | 7y+(14y-42)+7y=180 | | 4-1/2(10-2x=0 | | 10+m-15=4 | | x*0.03=1 | | 72=3(w−44) | | -3=-2w+7-w | | 80+2a+3a=180 | | -2/3(4x-2)=3x=7 | | 1.5(4x-6)=6x-12 | | 35=−8t−5 | | 8054=t-728 | | -20m=-19m-8 | | (y-1)+31+(5y-41)=180 | | 4z-8+3z=180 | | −3(8k+5)=3(9−k) | | 2x^2+12+4=0 | | 5(c-17)=-50 | | -7-6z=-7z-1 | | 6k-11k=29 | | P=-x^2+48x-512 | | 41+(u+6)+2u=180 | | 41+(u+6)+2u=189 | | X=75x=125 | | 8-10q=-6q | | 41+(u+6)+2u=170 | | 32+36+7y=180 | | x4=-8x | | 7x+(10-5x)=30 |